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ABSTRACT 

 
New parametric models concerning measures of information including entropy, joint entropy, conditional entropy, 
directed divergence and inaccuracy have been introduced and their detailed properties have been studied. A new concept 
to be called alpha logarithm has been introduced and the chain rule for entropy, alpha mutual entropy and directed 
divergence has been studied. More desirable properties known as subadditivity and strong subadditivity of the entropy 
function have been studied and certain new inequalities useful in the literature of information theory has been derived. 
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INTRODUCTION 
 
The notion of disorder or chaos, uncertainty or 
randomness, also known as entropy, was introduced by 
Clausius in the 19th century in thermodynamics- an 
integral part of Boltzmann’s theory. Subsequently, the 
probabilistic nature of the concept emerged more clearly 
with Gibbs work on statistical mechanics. It was one of 
Shannon’s (1948) great insights that entropy could be 
used as a measure of information content and one’s 
freedom of choice when one selects a message to be 
communicated over a noisy or noiseless channel. Shannon 
also stressed the importance of the relative entropy, also 
known as directed divergence as a measure of redundancy 
which provides a comparison between two probabilistic 
systems and typically measures the actual entropy to the 
maximal possible entropy. This relative entropy played a 
key role in many of the later discoveries and applications 
in a various disciplines of mathematical sciences. 
 
Shannon (1948) proposed the first most important and the 
simplest measure of additive entropy of a probability 
distribution 1 2( , ,..., )nP p p p= , given by 
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( ) log
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=
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with the convention that 0log0 : 0= . Kullback and 
Leibler (1951) introduced the most important and 
desirable measure of divergence associated with the 
probability distributions  

1 2( , ,..., )nP p p p= and 1 2( , ,..., )nQ q q q= , given by  
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Another different concept in information theory is the 

measure of inaccuracy which was introduced by Kerridge 
(1961) and which connects the above mentioned two 
measures mathematically. This concept is basically 
associated with two probability distributions 

1 2( , ,..., )nP p p p= and 1 2( , ,..., )nQ q q q= where Q  is 
predicted and P is true probability distribution and this 
measure of inaccuracy is given by  

1

( : ) log
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i

I P Q p q
=

= ∑ .   (1.3) 

The above mentioned measures have very nice 
mathematical properties and have tremendous 
applications in a variety of disciplines dealing with 
mathematical sciences. In spite of the fact that these 
measures are fundamental, we may face problems if we 
stick to these measures only because of their inadequacy 
towards applicability in every situation. An alternative is 
to use a generalized parametric measure of information 
where the parameter could hopefully be estimated from 
the data in the same way as ordinary statistical parameters 
are estimated from the data. 
 
Many authors including Renyi (1961), Havrda Charvat 
(1967) and Tsallis (2009) introduced various generalized 
measures of information which are now increasingly used 
in many fields. Gupta and Bajaj (2013) studied the 
monotonic behaviour of the conditional Tsallis (2009) and 
Kapur (1967) entropies. Besenyei and Petz (2013) 
investigated a kind of partial subadditivity for Shannon 
and Tsallis entropy. Asgarani (2013) introduced a set of 
new three-parameter entropies which are expressed in 
terms of a generalized incomplete Gamma function and 
shown that for some special values of parameters, some 
known entropies are recovered. The uniqueness theorem 
for a two parameter extended relative entropy, that is, 
directed divergence is proved and its properties are 
studied by Furuichi (2010). Teixeira and Antunes (2012) *Corresponding author email: omparkash777@yahoo.co.in
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described three general definitions of conditional Renyi 
entropy and studied their properties and values as a 
function of parameterα . Bercher (2011) discussed the 
two families of two-parameter entropies and divergences, 
derived from the standard Renyi and Tsallis entropies and 
divergences. Furuichi and Mitroi (2012) introduced some 
parametric extended divergences combining J-divergence 
and Tsallis entropy defined by generalized logarithmic 
functions, which lead to new inequalities whereas several 
other inequalities on generalized entropies have been 
studied by Furuichi and  Mitroi (2012). 
 
The objective of the present study is to develop new 
information theoretic models and study their properties. 
The paper is organized as follows: In section 2, new 
measure of entropy to be called alpha entropy is 
introduced and its properties are studied. Section 3 deals 
with the new concept of alpha logarithm and provides the 
chain rule for alpha entropy and alpha mutual entropy by 
defining alpha joint entropy and alpha conditional 
entropy. Subadditivity and strong subadditivity property 
of entropy has been studied and various new inequalities 
has been derived. In section 4, new measure of directed 
divergence, its chain rule and new measure of inaccuracy 
is introduced. 
 
2. New Measure of Entropy 

In this section, we propose a new generalized measure of 
entropy for a probability distribution 
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of the random variable ( )1 2, ,..., nX x x x=  and studied its 
essential and desirable properties. This new entropy 
measure of order α to be called alpha entropy, is given 
by the following mathematical expression:  
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where ln(.) stands for the natural logarithm. 
The expression (2.1) can also be written as  
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The two notations ( )A Xα and ( )A Pα need not to be 
confused as they have the same meaning and will be used 
wherever required for simplicity. 

Obviously, we have ( )
1

lim A Pαα→
=
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i i
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p p
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−∑ . 

Thus, ( )A Pα is a generalization of well known Shannon 
(1948) entropy. 

Next, to prove that ( )A Pα is a valid measure of entropy, 
we study its essential and desirable properties as follows: 
1. Obviously, ( ) 0A Pα ≥ . 

2. ( )A Pα  is permutationally symmetric as it does not 
change if 1 2 3, , ,..., np p p p  are re-ordered among 
themselves. 
3. ( )A Pα  is a continuous function of ip  for all ip ’s. 
 
4. Concavity: The Hessian matrix of second order partial 
derivatives of ( )A Pα  with respect to 1 2, , , np p pK  is 
given by 
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which is negative definite. 
Thus, ( )A Pα  is a concave function of ip for all ip ’s.       
 
5. Expansibility: We have 

( )1 2 3, , ,..., ,0nA p p p pα = ( )1 2 3, , ,..., nA p p p pα . 
That is, the entropy does not change by the inclusion of an 
impossible event. 
 
6. For degenerate distributions, ( ) 0A Pα = .  
This indicates that for certain outcomes, the uncertainty 
should be zero. 
 
7. Maximization of entropy: We use Lagrange’s method 
to maximize the entropy measure (2.1) subject to the 

natural constraint
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In this case, the corresponding Lagrangian is  
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Differentiating equation (2.2) with respect to ip , 
1,2,...,i n=  and equating the derivatives to zero, we get  
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Thus, we observe that the maximum value of 
( )A Pα arises for the uniform distribution and this result 

is most desirable. 
 
8. The maximum value of the entropy is given by 
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 is an increasing 

function of n , which is again a desirable result as the 
maximum value of an entropy should always increase. 
 
9. Non-Additive property: 
Let ( )1 2, ,..., nP p p p=  and ( )1 2, ,..., mQ q q q=  be two 
independent probability distributions of two random 
variables X andY , so that 
( )i iP X x p= = , ( )j jP Y y q= =

( ) ( ) ( ),i j i j i jP X x Y y P X x P Y y p q= = = = = = . 
For the joint distributions of X andY , there are nm  
possible outcomes with probabilities i jp q ; 1,2,...,i n=  
and 1,2,...,j m= , so that the entropy of the joint 
probability distribution, denoted by P Q∗ , is given by 
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From (2.3) and (2.4), we have  
( ) ( ) ( ) ( ) ( ) ( )1A P Q A P A Q A P A Qα α α α αα∗ = + + − . 

 
So, measure of entropy ( )A Pα is non-additive. 
 
Thus, we claim that the new measure of entropy of order 
α  introduced in (2.1) satisfies all the essential as well as 
desirable properties of being an entropy measure, it is a 
new generalized measure of entropy. 

3 Alpha Logarithm-New Concepts 
Let us introduce a new function to be called alpha 
logarithm given by  

ln 1ln
1

x
xα

α
α

−
≡

−
, 1α ≠ ,           (3.1) 

for any non-negative real number x andα . 
  
For 1α → , alpha logarithm tends to natural logarithm, 
that is, 

1
lim ln lnx xαα→

= . 

Its inverse is the alpha exponential function given by   

( )( )
1

ln1 1xe x αα α≡ + − . (3.2) 
For 1α → , alpha exponential tends to exponential 
function, that is, 

1
lim x xe eαα→

= .   

Now, let us state some results related to function (3.1) and 
(3.2) 
1. ( ) ( )ln ln ln 1 ln lnxy x y x yα α α α αα= + + −   (3.3)                     

2. ( ) lnln ln lnxxy x yα α αα= + .       (3.4) 
                        

3. ln1ln lnx x
xα αα−⎛ ⎞ = −⎜ ⎟

⎝ ⎠
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4. ( )1x y xy x ye e eα
α α α
+ + − = .         (3.6) 

Alpha entropy can be written as the alpha logarithm 
Shannon entropy in the following way: 
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Using result (3.5), (3.7) can further be written as 
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Now, let us introduce the alpha joint entropy and alpha 
conditional entropy by means of following definitions: 
 
Definition 3.1 For the conditional 
probability ( ) ( )p x y p X x Y y= = = , we define alpha 
conditional entropy as 

( ) ( ) ( )
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Definition 3.2 For the joint 
probability ( ) ( ), ,p x y p X x Y y= = = , we define alpha 
joint entropy as 
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or  
( ) ( ) ( ), , ln , , 1
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3.1 Chain rules for alpha entropy 
Now, let us study the chain rule for alpha entropy given 
by means of following theorem: 
 
Theorem 3.1 For the two random variables X  and Y , we 
have 
 ( ) ( ) ( ), , 1A X Y A X A Y Xα α α α= + > .   (3.1.1) 

Proof: Using ( ) ( ) ( ),p x y p y x p x=  and result (3.4), we 
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Note: If X and Y are independent, that is, 
( ) ( )p y x p y=  for all x and y , then from Theorem 3.1, 

we have the following pseudo-additivity: 
( ) ( ) ( ) ( ) ( ) ( ), 1A X Y A X A Y A X A Yα α α α αα= + + −

                
 

 
Theorem 3.2 The following chain rules hold: 
(1) ( ) ( ) ( ), , ,A X Y Z A X Y Z A Zα α α= + .            (3.1.2) 

(2) ( ) ( ) ( ), ,A X Y Z A X Z A Y X Zα α α= +          (3.1.3) 
Proof(1): 
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 ( ) ( ), ,A Z A X Y Zα α= − +  

that is, ( ) ( ) ( ), , ,A X Y Z A X Y Z A Zα α α= + . 
 
(2) On similar lines as proved in part (1), we have 

( ) ( ) ( ), , , ,A Y X Z A X Y Z A X Zα α α= − .  (3.1.4) 
Also, from (3.1.1), we have 

( ) ( ) ( ),A X Y A X A Y Xα α α= + .   (3.1.5) 
 
Therefore, equation (3.1.4) can further be written as  

( ) ( ) ( ) ( ) ( )( ), ,A Y X Z A X Y Z A Z A Z A X Zα α α α α= + − +

that is, ( ) ( ) ( ), ,A Y X Z A X Y Z A X Zα α α= −  which 
proves (3.1.3). 
 
Remark 1. From (3.1.3), we have  

( ) ( ),A X Z A X Y Zα α≤ . 
 
2. The part (2) of Theorem 3.2 can further be generalized 
in the following way: 
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Theorem 3.3 Let 1 2, ,..., nX X X be the random variables 
.Then we have the following chain rule: 
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Proof: We prove the theorem by induction on n . From 
Theorem 3.1, we have  
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Let us assume that the result (3.1.6) is true for some n . 
From (3.1.1), we have  
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which shows that (3.1.6) holds for 1n + . 
 
3.2 Subadditivities for alpha entropy 
Theorem 3.4 Let X and Y  be two random variables, 
then we have 

( ) ( ) , 1A X Y A Xα α α≤ > ,  (3.2.1)  

with equality if and only if 1α =  and ( ) ( )p x y p x= for 
all x and y . 
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This function is concave function of x . So, by concavity 
of ( )f x , we have 
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Taking summation on x on both sides of (3.2.2), we get 

( ) ( )( ) ( )( )
y x x

p y f p x y f p x≤∑ ∑ ∑  
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Since ( ) ( ) ( )ln p yp y p yα ≤ and ( ) 0f x ≥  for any 0x > , 
we have 
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From (3.2.3) and (3.2.5), we have  
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The equality holds when 1α =  and ( ) ( )p x y p x= , 

that is, when X andY are independent. 
 
Theorem 3.5 Alpha entropy is sub-additive, that is, 

( ) ( ) ( ),A X Y A X A Yα α α≤ + .    (3.2.6) 
 
Proof: The proof follows directly from Theorem 3.1 and 
Theorem 3.4. 
 
Theorem 3.6 For the random variables 1 2, ,..., nX X X , we 
have  
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with equality if and only if 1α = and the random 
variables are independent of each other.      
 
Proof: The proof follows directly by making use of 
Theorem 3.3 and Theorem 3.4. 
 
Theorem 3.7 For the random variables , ,X Y Z
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probabilities ( ) ( )p X x p x= = , ( ) ( )p Y y p y= = ,
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probability ( ), ,p x y z , strong subadditivity  
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So, using the non-negativity of the function ( )f x and 
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 From (3.2.9) and (3.2.11), we have 

( ) ( ) ( )( ) ( ) ( ) ( )( )ln , ln

, ,

, ,p y z p z

y z x z x

p y z f p x y z p z f p x zα α≤∑ ∑ ∑

( ) ( )
( ) ( ) ( )

( )
ln , , ln ,

, , ,

1 1, , ln , ln
,

p x y z p x z

x y z x z

p x y z p x z
p x y z p x zα αα α⇒ ≤∑ ∑  

that is, ( ) ( ),A X Y Z A X Zα α≤      (3.2.12) 
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( ) ( ) ( ) ( ), , , ,A X Y Z A Y Z A X Z A Zα α α α⇒ − ≤ − .                                        
(Using Theorem 3.1) 
 
The equality holds when 1α = and the random variables 
X and Y are independent for a given random variable Z , 

that is, when ( ) ( ),p x y z p x z= . 
 
Note: Inequality (3.2.6) can be recovered from inequality 
(3.2.8) by treating the random variable Z as a trivial one 
which proves that Theorem 3.7 is a generalization of 
Theorem 3.5. 
 
The more generalized form of Theorem 3.7 is as follows: 
 
Theorem 3.8 For the random variables 1 2, ,..., nX X X , we 
have 

( ) ( )1 1 2 1 2, ,..., ,...,n n n nA X X X X A X X Xα α+ +≤ .                   
                                                                             (3.2.13) 
Proof: The proof is on similar lines as in Theorem 3.7.  
 
Theorem 3.9 For the random variables , ,X Y Z , we have 

( ) ( ) ( ),A X Y Z A X Z A Y Zα α α≤ + .                (3.2.14) 
 
Proof: Adding ( )2 A Zα− to both sides of inequality 
(3.2.8), we have 

( ) ( ) ( ) ( ) ( ) ( ), , , ,A X Y Z A Z A X Z A Z A Y Z A Zα α α α α α− ≤ − + −  
By making use of Theorem 3.1 in above inequality, we 
have result (3.2.14). 
 
Above theorem can be generalized in the following way: 
 
Theorem 3.10 For the random variables 1 2, ,..., ,nX X X Z , 
we have 

( ) ( ) ( ) ( )1 2 1 2, ,..., ...n nA X X X Z A X Z A X Z A X Zα α α α≤ + + +                                                                                                    
                                                                                (3.2.15) 
 
Proof: The above result can be proved with the help of 
mathematical induction. 
 
Theorem 3.11 For the random variables , ,X Y Z , we have 

( ) ( ) ( ) ( )2 , , , , ,A X Y Z A X Y A Y Z A Z Xα α α α≤ + + .                                                       
(3.2.16) 

Proof: From equation (3.2.12), we have 
 ( ) ( ),A X Y Z A X Zα α≤ .   (3.2.17) 
From equation (3.2.1), we have 

( ) ( )A X Z A Xα α≤ .   (3.2.18) 
So, (3.2.17) and (3.2.18) gives 

( ) ( ),A X Y Z A Xα α≤ .   (3.2.19) 
Again from equation (3.2.12), we have 

( ) ( ),A Z X Y A Z Xα α≤ .  (3.2.20) 
Adding equation (3.2.19) and (3.2.20), we have 

( ) ( ) ( ) ( ), ,A Z X Y A X Y Z A Z X A Xα α α α+ ≤ +         (3.2.21) 
 
Applying chain rule in (3.2.21), we have 

( ) ( ) ( ) ( ) ( ), , , , , , ,A X Y Z A X Y A X Y Z A Y Z A Z Xα α α α α− + − ≤

which proves the theorem. 
 
Theorem 3.12 For the random variables 1 2, ,..., nX X X , 
we have 

( ) ( ) ( ) ( )1 2 1 3 2 1...n n nA X X A X X A X X A X Xα α α α −≤ + + +

  (3.2.22)  
Proof: From equation (3.1.6), we have 

( ) ( )1 2 1 1
1

, ,..., ,...,
n

n i i
i

A X X X A X X Xα α −
=

=∑ , 

that is, 
( ) ( ) ( ) ( )

( )
1 2 1 2 1 3 2 1

1 1

, ,..., ,

... ,...,

n

n n

A X X X A X A X X A X X X

A X X X

α α α α

α −

= + +

+ +
    

                                                                            (3.2.23) 
Using equation (3.2.12) in (3.2.23), we have 

( ) ( ) ( ) ( )1 2 1 2 1 3 2, ,..., nA X X X A X A X X A X Xα α α α≤ + +

                             ( )1... n nA X Xα −+ +          (3.2.24) 
From the generalization of part (2) of Theorem 3.2, we 
have 

( ) ( )1 2 1,...,n nA X X A X X Xα α≤  

                   ( ) ( )1 1,..., nA X X A Xα α= −                                                  
(Using Theorem 3.1) 
        ( ) ( ) ( )2 1 3 2 1... n nA X X A X X A X Xα α α −≤ + + + , 
which proves the theorem. 
 
3.3 Alpha Mutual entropy 
Alpha mutual entropy for the two random variables 
X and Y is defined as the difference between alpha 

entropy and alpha conditional entropy and is given by 
( ) ( ) ( ):I X Y A X A X Yα α α= − .                          (3.3.1) 

Also, alpha conditional mutual entropy for the three 
random variables , ,X Y Z is given by 

( ) ( ) ( ): ,I X Y Z A X Z A X Y Zα α α= − .             (3.3.2) 
 
Theorem 3.13 (1) For the three random variables , ,X Y Z , 
the following chain rule holds: 

( ) ( ) ( ): , : :I X Y Z I X Z I X Y Zα α α= + .            (3.3.3) 
 
(2) For the random variables 1 2, ,..., nX X X andY  , the 
following chain rule holds: 
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( ) ( )1 2 1 2 1
1

, ,..., : : , ,...,
n

n i i
i

I X X X Z I X Y X X Xα α −
=

=∑ .                                                    

 (3.3.4) 
Proof: (1) We have 

( ) ( ) ( ): ,I X Y Z A X Z A X Y Zα α α= −                      

                ( ) ( ) ( ) ( ),A X Z A X A X A X Y Zα α α α= − + −  

                ( ) ( ): : ,I X Z I X Y Zα α= − + , 
which proves the part (1). 
 
(2) We have 

( )1 2 1 2 1 2, ,..., : ( , ,..., ) ( , ,..., )n n nI X X X Z A X X X A X X X Yα α α= −
Using remark 2 and equation (3.18) in above equation, we 
have 

( ) ( )

( )

1 2 1 1
1

1 1
1

, ,..., : ,...,

,..., ,

n

n i i
i

n

i i
i

I X X X Z A X X X

A X X X Y

α α

α

−
=

−
=

=

−

∑

∑
 

                                   ( )1 2 1
1

: , ,...,
n

i i
i

I X Y X X Xα −
=

=∑ , 

which proves part (2). 
 
Note: Applications of inequalities 
This is to be remarked that information theoretic 
inequalities play an important role in the theory of 
cryptography. To mention the fact, we consider 
Shannon’s (1948) famous secret key cryptosystem model 
which consists of sender " "S , a receiver " "R , an 
eavesdropper " "E , and an open channel from " "S to " "R . 
The secret key Z is known to " "S  and to " "R only 
whereas " "S encrypts the text X using Z according to 
the encryption rule which results in the cryptogram Y that 
is sent to " "R  and can also be received by " "E . " "R can 
recover X with his knowledge of Z . In the present 
model, a cipher is called perfect if and only if the text 
X and the cryptogram Y are independent random 

variables, that is, if and only if ( ), 0I X Yα = or 

equivalently, ( ) ( )A X A X Yα α= if we apply the 
parametric entropy introduced in section 2. " "R  must be 
able to recover X uniquely from Y and Z , that is, 

( ) 0A X Y Zα = . 
Thus, applying this model, we have 

( ) ( )A X A X Yα α=  

            ( )A XZ Yα≤                                                                          
(Using equation (3.1.3)) 
             ( ) ( )A Z Y A X Y Zα α= +                                                      

             ( )A Z Yα=  

              ( )A Zα≤  

This inequality shows that the entropy of the secret key 
must be as large as the entropy of the text to be encrypted, 
and consequently provides a helpful tool for the removal 
of uncertainty to be removed. 
 

 
4 New measures of Directed Divergence and 

Inaccuracy 
4.1 Measure of directed divergence  
We propose a new measure of divergence of probability 
distributions 1 2( , ,..., )nP p p p=  from another probability 
distribution 1 2( , ,..., )nQ q q q=  given by 

 

ln

1

1
( : ) , 1

1

i

i

pn
q

i
i

p
D P Qα

α
α

α
=

−
= >

−

∑
.   (4.1.1) 

This measure is to be called alpha directed divergence. 
The measure (4.1.1) can also be written in the following 
form: 

1

( : ) ln , 1
n

i
i

i i

pD P Q p
qα α α

=

= >∑ ,      (4.1.2) 

or 
ln

1

( : ) ln , 1
i

i

pn
q i

i
i i

qD P Q p
pα αα α

=

= − >∑ .    (4.1.3) 

Also, 
1 1

limit ( : ) ln
n

i
i

i i

pD P Q p
qαα→

=

= ∑ , 

which is Kullback-Leibler’s (1951) measure of directed 
divergence. 
 
Now, to prove the validity of this measure, we will resort 
to the definition of measure of directed divergence as 
given by Csiszer (1972) in the form of following theorem: 
 
Theorem 4.1 If ( ).φ is twice differentiable convex 

function such that ( )1 0φ =  , then  

( )
1

: Q
n

i
i

i i

pD P q
q

φ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ,        (4.1.4) 

is a valid measure of directed divergence. 

Now, let us take ( ) ( )ln 1
ln , 1

1

xx
x x xα

α
φ α

α

−
= = >

−
. 

Here ( )1 0φ = and ( ) ( ) ln1' 1 ln 1
1

xxφ α α
α

⎡ ⎤= + −⎣ ⎦−
, 

( ) ( )
( )

ln 1 ln ln
'' 0

1

x

x
x

α α α
φ

α
+

= >
−

, 

which shows that ( )xφ is a convex function of x . 

So, ( )xφ satisfies all conditions of Theorem 4.1. 
Substituting it in equation (4.1.3), we get the measure of 
directed divergence (4.1.1).  Hence, (4.1.1) is a valid 
measure of directed divergence. 
 
Second Criteria to prove the validity of this measure is to 
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study its properties which are as follows: 
1. ( : ) 0D P Qα ≥ . 
 
Proof: We will find the extremum of ( : )D P Qα subject to 

the constraint
1

1
n

i
i

p
=

=∑ . Let us consider the Lagrangian 

given by  

1

( : ) 1
n

i
i

L D P Q pα λ
=

⎛ ⎞≡ + −⎜ ⎟
⎝ ⎠

∑ . 

Now, ( )
ln

1 ln
, 1,2,...,

1

i

i

p
q

i

L i n
p

α α
λ

α
+∂

= − =
∂ −  

and 0
i

L
p
∂

=
∂

, 

gives  
( )1

log
1 ln

i ip q e α
λ α

α
−

+= .                                                       (4.1.5) 

Now, using 
1

1
n

i
i

p
=

=∑  gives
( )1

log
1 ln 1e α
λ α

α
−

+ = . 

So, from equation (4.1.5), we get 
, 1,2,..., .i ip q i n= =  

Also, ( )
( )

2

2

1 ln ln
0, 1,2,...,

1
i i

i ip q

L i n
p q

α α
α

=

+⎛ ⎞∂
= > =⎜ ⎟∂ −⎝ ⎠

. 

and 
2

0, .
i j

L i j
p p
∂

= ≠
∂

 

So, we see that the minimum value of ( : )D P Qα is 
obtained when , 1,2,...,i ip q i n= =  
and [ ]min( : ) 0D P Qα = . So, ( : ) 0D P Qα ≥ . 
2. ( : ) 0D P Qα = when P Q= . 
3. ( : )D P Qα is a convex function of P and Q . 
Proof: The Hessian matrix of second order partial 
derivatives of ( ):D P Qα  with respect to 1 2, , , np p pK  is 
given by 

( )
( )

( )
( )

( )
( )

1

1

2

2

ln

1

ln

2

ln

1 ln ln
0 0

1

1 ln ln
0 0

1

1 ln ln
0 0

1

n

n

p
q

p
q

p
q

n

p

p

p

⎡ ⎤
α + α α⎢ ⎥

⎢ ⎥α −⎢ ⎥
⎢ ⎥
⎢ ⎥α + α α
⎢ ⎥

α −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

α + α α⎢ ⎥
⎢ ⎥α −⎣ ⎦

K

K

M M K M

K

 

which is positive definite. A similar result is also true 
with respect to 1 2, , , nq q qK . Thus, we conclude that 

( ):D P Qα  is a convex function of both 1 2, , , np p pK  
and 1 2, , , nq q qK . 

Hence, ( ):D P Qα is a valid measure of directed 
divergence. 
Next, we propose the measure of conditional directed 

divergence by taking in view the definition of alpha 
entropy and conditional alpha entropy. 
 
Definition 4.1 For the two joint probability distributions 
( ),p x y and ( ),q x y and the two conditional probability 

distributions ( )p y x and ( )q y x , conditional directed 
divergence is given by the following mathematical 
expression: 

( ) ( )( ) ( )
( )
( ) ( )

( )

,
ln

,

1

: , ln , 1
p x yn
q x y

i

q y x
D p y x q y x p x y

p y xα αα α
=

= − >∑ .                              

 (4.1.6) 
 

Theorem 4.2 The following chain rule holds for alpha 
directed divergence for general case, that is, when X and 
Y are not independent 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

, : , :

:

D p x y q x y D p x q x

D p y x q y x

α α

α

=

+
                          

 (4.1.7) 
Proof: The proof follows from the direct calculations: 

( ) ( )( ) ( ) ( )
( )

,
, : , , ln

,x y

p x y
D p x y q x y p x y

q x yα α= ∑∑  

          ( ) ( )
( )

( )
( ) ( )

( )
ln

, ln ln
p x
q x

x y

p y xp x
p x y

q x q y xα αα
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑∑    

                                                     (Using equation (3.4)) 
                            

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

( )
lnln

, ln , ln
p y xp x
q y xq x

x y x y

q y xp x
p x y p x y

q x p y xα αα α= −∑∑ ∑∑                               

(Using equation (3.5))     

( ) ( )
( ) ( )

( )
( ) ( )

( )

,
ln

,, ln , ln
p x y
q x y

x y x y

q y xp x
p x y p x y

q x p y xα αα= −∑∑ ∑∑     

 (4.1.8) 
( ) ( )( ) ( ) ( )( ): :D p x q x D p y x q y xα α= + . 

 

Note: When X and Y are independent, that is, when 
( ) ( )p y x p y=  and ( ) ( )q y x q y= , alpha directed 

divergence has a pseudoadditivity as shown below: 
From (4.1.8) 

( ) ( )( ) ( ) ( )
( )

( )
( )
( ) ( )

( )

,
ln

,

, : , , ln

, ln

x y

p x y
q x y

x y

p x
D p x y q x y p x y

q x

q y x
p x y

p y x

α α

αα

=

−

∑∑

∑∑
                                 

( ) ( )( ) ( ) ( )( ) ( )
( )
( )

ln

: :
p x
p x

x

D p x q x D p y q y p xα α α= + ∑                           

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

: :

1 : :

D p x q x D p y q y

D p x q x D p y q y
α α

α αα

= +

+ −
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4.2 Measure of Inaccuracy 
We propose the new parametric measure of inaccuracy 
given by the following mathematical expression: 

ln

1

1( : ) ln , 1i

n
p

i
i i

I P Q p
qα αα α

=

= >∑ .    (4.2.1) 

Letting 1α → , measure (4.2.1) reduces to Kerridge’s 
(1961) measure of inaccuracy given by 

1

( : ) ln
n

i i
i

I P Q p q
=

= −∑ . 

Measure (4.2.1) is a valid measure of inaccuracy as it 
satisfies the following properties: 

1. ln

1

1( : ) ln 0i

n
p

i
i i

I P Q p
qα αα

=

= ≥∑ .  (4.2.2) 

Since measure (4.2.1) is a sum of alpha entropy and alpha 
directed divergence given by (2.1) and (4.1.1) 
respectively, both of which are non-negative quantities, 
therefore (4.2.2) holds. 

2. ln

1

1( : ) ln , 1i

n
p

i
i i

I P P p
pα αα α

=

= >∑  is a valid measure of 

entropy as proved in Section 2. 
3. ( : ) ( : )I P Q I P Pα α≥  and ( : )I P Qα reduces to 

( : )I P Qα only when Q P= . 
 
CONCLUDING REMARKS 
 
The non-additive Tsallis entropy which is supposed to be 
a firm basis of the non-extensive statistical mechanics 
having applications in diverse disciplines of mathematical 
sciences motivated us to introduce the non-additive 
measure of entropy in the manuscript. It is expected that 
the proposed measure will perform equally well in all the 
application areas parallel to Tsallis entropy. Also, we 
have made the detailed study of the proposed entropy 
measure in the form of inequalities, theorems and 
developed corresponding measures of information 
applicable to a variety of mathematical disciplines. 
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